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Abstract

Healthy aging is associated with several cognitive impairments, including declined at-

tention, working memory, decision-making, and processing speed. Studying perceptual

processes occurring on a very fast timescale in the context of spontaneous reorgani-

zation of underlying large scale brain networks can be challenging using traditional

neuroimaging approaches. In this study, we investigated spontaneous brain dynamics

to characterize the neural correlates of the changes in cognitive abilities with aging. We

used resting-state MEG data from Cam-CAN and employed a data-driven, statistical

Bayesian modeling approach to define transient brain activity recurring over time. We

compared activation patterns, temporal features, spectral properties and connectivity

patterns in four age groups, Young (18-34 years), Early Middle-aged (35-49 years),

Late Middle-aged (50-64 years) and Old (65-88 years). The activation pattern in all

age groups was found to differ, and the overall functional connectivity within net-

works showed variable trends with age. The temporal features of these transient states

were relatively stable and were not affected by aging. Global coherence in specific

band-limited power spectra also showed consistent age-related changes in all transient

states. We found that global coherence in the theta and alpha ranges follows opposite

patterns of decline with age. The inverse relationship in these two dominant frequency

bands suggests a compensatory mechanism in the brain that could help prevent func-

tional cognitive decline. We also investigated the role of frequency in the connectivity

dynamics and its alteration with age. Further, we were interested in understanding the

contribution of phase coupling or synchronization in driving these connectivity changes.

We found a more significant contribution of power and coherence over phase. Finally,

the pattern of connectivity in the older age groups also suggested a compensation hy-

pothesis, based on which the large scale networks might undergo reorganization and

adapt to the detrimental effects of aging. The within-network connection strengths

show variable selectivity for anterior vs posterior connections in both frequency bands.

xv



Coherence based connectivity between significant clusters in the alpha range was more

selective for posterior connections, while in the theta band, the anterior connections

survived age-associated decline. In summary, our study investigated the temporal,

spectral and activation properties of transient brain networks and explored the effect

of lifespan aging on them, which has profound implications for age-related decline in

functional cognition.



Chapter 1

Introduction

The neurobiology of healthy and pathological aging consists of cumulative lifespan

associated alterations in multiple domains, including cell biology, protein chemistry,

morphology, physiology, oscillatory activity, and behavior. Neural oscillations exist

in a range of multiple frequency landscapes with associated timescales of cognitive

processing. Considering the rapid aging of the world’s population, it is crucial to un-

derstand the neural and functional correlates of the cognitive decline that is associated

with healthy aging. The most noticeable changes in cognitive ability as a person grows

older include a decline in performance on cognitive tasks requiring decision-making,

speed of processing, working memory and executive cognitive function [1]. Some as-

pects of cognition, however, remain relatively stable across the lifespan. These include

what is known as ‘crystallized abilities’, which are the acquired skills and memories over

the lifespan. General knowledge, reading comprehension, retrieval of semantic knowl-

edge (e.g. historical information, anecdotes), and vocabulary reflect the crystallized

abilities that are relatively preserved as a person gets older.

With the increase in the number of older adults in the population, it is essential

to understand how age impacts cognition and if preventative and treatment strategies

can be developed to help preserve cognition with advancing age. This is also vital for an

individual’s functional independence and to conserve their quality of life. There are,

however, certain limitations that arise when studying cognition in relation to aging

[2]. Lifespan studies are often associated with recruitment or cohort biases. Cross-

sectional studies comparing groups of subjects in specific age groups risk attributing

the differences found between groups to age, while other unmeasured factors might be

1
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ignored. Longitudinal studies, on the other hand, are susceptible to practice effects or

survival bias [1, 3, 4]. The Cambridge Center for Aging and Neuroscience (Cam-CAN)

project, launched in 2010, was a large-scale, collaborative, cross-sectional study at the

University of Cambridge which aimed to overcome these challenges and confounds. The

study used epidemiological, cognitive, and neuroimaging data from nearly 700 subjects

between the ages of 18-88 to understand how individuals can best retain their cognitive

abilities with advancing age.

In this study, we wanted to focus on how transient brain dynamics evolve with

age. Communication between spatially distinct brain regions, even in the resting state,

is known to be highly informative in predicting cognitive flexibility [5]. Information

flow in the brain during rest is highly related to the embedded network topology, and

the pattern of information transfer can facilitate higher cognitive functions. Previous

studies have investigated resting-state connectivity across the lifespan using functional

magnetic resonance imaging (fMRI) blood oxygen level-dependent (BOLD) signals

from specific regions of interest (ROIs) [6, 7]. Whole-brain analysis has revealed several

resting-state networks (RSNs) observed through changes in BOLD signals. These net-

works are highly resolved spatially, but due to the longer timescale of BOLD response

(∼ 10 seconds), the temporal resolution is limited to much slower timescales than the

underlying neural processes. The ability of the brain networks to flexibly reorganize

and coordinate over a millisecond timescale can be studied with magnetoencephalog-

raphy (MEG) data [8], which provides excellent temporal as well as spatial resolution.

It is relatively free of physiological noise [9] and is less sensitive to age-related changes

in vascular factors [10]. We used resting-state MEG data from the Cam-CAN project,

characterized transient network dynamics by employing a Hidden Markov Model on the

source reconstructed data, and studied these transient states’ temporal and spectral

characteristics across the lifespan.

In the subsequent sections, we cover the literature review of studies on the age-

related cognitive decline across multiple neuroimaging techniques, the rationale behind

using a variational Bayes inference method like the Hidden Markov Model to study

brain dynamics, followed by an overview of the scope of the dissertation.
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Age and Cognition: A Literature Review

1.1 Neurobiological basis of age-associated decline

in cognitive abilities

Dynamic changes in biological, physiological, environmental, and behavioral processes

are associated with healthy aging. It is imperative to understand the anatomical and

physiological alterations correlated with the decline in functional cognition. The key

neurobiological mediators of age-related decline in cognitive abilities and the onset of

such changes in the lifespan have been extensively studied using longitudinal as well as

cross-sectional data sets and a range of techniques such as Magnetic Resonance Spec-

troscopy (MRS), Magnetic Resonance Imaging (MRI), Positron Emission Tomography

(PET), Radiochemistry, and Diffusion Tensor Imaging (DTI). These studies have re-

vealed that there is age-associated decline in whole-brain volume [11, 7, 12]. In a study

by Kruggel et al., it was seen that the loss of gray matter volume was significantly

higher than white matter volume with a highly significant increase in CSF volume [13].

These differences were mostly observed in anterior cingulate, orbitofrontal and lateral

prefrontal cortices with little to no difference in volume in occipital and temporal lobes

[12]. DTI studies have also shown that there is a significant decrease in white matter

fractional anisotropy in healthy adults with age [14, 15] which suggests degradation

of white matter microstructure. Interestingly, white matter degradation was seen to

be selective to prefrontal regions of the brain but also encompassed frontocerebellar

circuitry. Studies on quantitative changes in cortical thickness and shape of sulci and

gyri with age revealed a pattern similar to a brain undergoing atrophy [16]. With

increasing age, the cortical mantle was seen to become thinner, with most significant

thinning seen in inferior prefrontal, precentral and supramarginal regions [17], with the

gyri becoming narrower and more curved. The sulci, in turn, get broader and more

flattened. In addition to these structural changes, some studies have also looked at

the relationship between age-associated metabolic changes in the brain with cognitive

functioning. Decrease in striatal dopamine binding [18, 19] and serotonin receptor

binding in frontal and cingulate areas [20] have been found to be significant mediators

in cognitive decline. These studies have provided an overall understanding of how the

chemistry and morphology of major cognitive areas of the brain are affected as a person

grows older.
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1.2 Functional basis of age-associated decline in

cognitive abilities

1.2.1 Oscillatory activity, Coherence and Power

Oscillatory activity in the brain is linked to a wide variety of perceptual, sensory, motor

and cognitive operations. EEG studies have shown the correlation of periodic brain

waves in particular frequency ranges with specific cognitive tasks.

For example, alpha (8-13 Hz) are the dominant oscillations in the brain that are

traditionally believed to represent idling processes in the brain [21]. They are negatively

correlated with cortical excitability and task performance but act as a major contrib-

utor to perceptual facilitation, spatial and selective attention [22], and feature-based

visual attention [23]. There is a significant slowing of peak frequency, and decrease in

power in the alpha band [24, 25] which has been reported to be a biomarker of healthy

as well as pathological aging process [26, 27]. Additionally, Sahoo et al. found a linear

decrease in the global alpha coherence with age [25].

Low-frequency theta (3-7 Hz) oscillations have also been studied in the context

of development and aging. Both peak frequency and theta power were higher in older

adults, with an associated non-linear increase in global coherence after the age of

50. Higher theta power may be interpreted to be indicative of slower cognitive speed

and mild cognitive impairment. However, if the slowing of alpha frequency is taken

into account, the increase in theta power associated with healthy aging might act

as a compensatory mechanism to increase cognitive performance in tasks involving

arithmetic, working memory, spatial navigation, and episodic memory encoding and

retrieval [28, 29].

Beta band (14-30 Hz) activity is known to be reliably associated with movement

planning, and execution [30, 31]. Prior to making a movement and during the move-

ment itself, there is a strong decrease in beta activity which dissipates shortly after the

movement concludes. This phenomenon, known as event-related desynchronization, is

followed by a strong increase in power relative to baseline levels and is known as post-

movement beta rebound. Studies have shown that these movement-related oscillatory

patterns show a non-linear increase in power [32, 25, 31] and linear increase in sponta-

neous beta activity in the motor cortices [32]. Global coherence in the beta band has
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not been seen to show any age-dependence [25].

1.2.2 Network Connectivity

Functional Connectivity (FC) is the measure of the strength of connection between

two spatial distinct brain regions based on their co-activation over time. Two brain

regions are considered ‘functionally connected’ when there is reliable covariation or

correlation of their activities over time. Clustering algorithms, spatial independent

component analysis (ICA), graph theory, and seed-based-based connectivity measures

are usually applied to fMRI BOLD signals to characterize such synchronization. Even

in the resting state (i.e. when a subject is not performing any tasks), studies have

identified certain core, large-scale brain networks consisting of several discrete brain

regions responsible for different cognitive functions. The major brain networks include

the default mode network (DMN), salience network, dorsal attention network (DAN),

executive control network, sensorimotor network, and the visual network (shown in

Figure 1.1). fMRI studies have shown that functional connectivity in these large-scale

brain networks gets reorganized as a consequence of widespread structural deterioration

[33]

DMN is the most extensively studied network in the context of aging. Functional

connectivity within the DMN has been found to decrease from early to late adulthood

[34, 35]. Temporal correlation between the anterior and posterior part of DMN is found

to be reduced in the case of older individuals [36, 37] which correlated with behavioral

measures of decreased executive functioning and processing speed [34].

Studies on other functional networks, however, have had contrasting results.

Some studies have found age-related decreases in functional connectivity in the vi-

sual network and increases in somatomotor, executive, frontoparietal and auditory

networks [38]. Another study by Allen et al. (2011) [39], on the other hand, found

a decrease in the majority of brain networks with age. Tomasi et al. (2011) [40]

used a voxelwise, data-driven approach called functional connectivity density mapping

(FCDM) to study age-related changes in short- and long-range FC measures in these

networks. They found prominent decreases in short- and long-range FC measures in

DMN and DAN and increases in somatosensory and cerebellar networks. For other

networks, the decreases in long-range connectivity were, on average, more significant

than short-range connectivity. Studies by Onoda et al. (2012) also found a decrease in
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Figure 1.1: Large scale networks identified by performing independent component anal-

ysis on fMRI data. Source: Heine et al., 2014

FC between nodes of the salience network with age and correlated this change with a

significant decrease in cognitive scores [41]. In another study, although no significant

effects of age on FC were found in executive networks, parts of the network FC could

predict age-associated change in executive function [42].

The disparity in these results can be attributed to some limitations associated

with the study designs, which differ in many aspects. One of the significant differences

is the method used to characterize these resting-state networks (RSNs). While some

studies use a theory-based approach of defining RSNs like seed-based correlation and

graph theory, others have taken a more data-driven approach. The samples used are
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also variable across studies, spanning different age ranges and study designs (longitu-

dinal versus cross-sectional). Finally, there are differences in statistical methodology

across these studies; while some studies used age regression, some have explored dif-

ferences between different age groups. Nevertheless, the differences in network-level

connectivity across the lifespan have given us a better understanding of the immense

capability of the brain to reorganize itself functionally.

1.3 Spontaneous brain activity

Resting-state networks are well established in neuroimaging to show temporally corre-

lated spontaneous activity. Complex thought and behavior arise through the dynamic

recruitment of these large-scale brain networks. Previous studies have used different

approaches to describe these so-called ‘transient networks’, some of which are described

below:

1. Independent Component Analysis (ICA): ICA is a method of explorative

data analysis which can produce a number of spatial maps and their correspond-

ing time courses when used with fMRI data. Spatial ICA has been found to

characterize resting-state brain networks reliably and robustly at both group,

and individual levels [43]. A predefined template or atlas is used to perform spa-

tial correction and to identify meaningful neurophysiological spatial components

[44]. It can utilize the entire spatial extent to identify large scale networks as well

as fine-grained networks by decomposing the functional data into spatial compo-

nents. According to the model order, larger networks can split into subnetworks

by increasing the number of ICs. ICA provides a reliable approach for measuring

functional connectivity in the brain, which has been used in previous studies in

the context of clinical populations and perception tasks.

2. EEG Microstates: In this approach, global patterns of dynamically recurring

scalp potential topographies are used to define large scale brain networks called

‘microstates’. The potential maps remain stable for 60-120ms before rapidly

transitioning to a different stable topography. Spatial cluster analysis based on

k-means clustering or agglomerative hierarchical clustering is popularly used to

define the topographical maps at each timepoint [45]. This method, however, can

identify a maximum of four to seven cluster maps to optimally describe the data.
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3. Graph theory: The graph theoretical approach models the brain networks as

a mathematical representation of a network, which reduces the complex brain

activity to nodes and connections between them. Functional connectivity between

networks is modeled in a mathematical framework as pairwise communications

between elements.

Nevertheless, the characterization of these networks through indirect hemody-

namic response via BOLD signals poses a significant limitation in our comprehension

of spontaneous activity. fMRI studies preclude understanding how the low-frequency

fluctuations typically associated with RSNs can relate to the much faster timescales of

cognition and sensory processing, thus restraining our ability to study the rich temporal

dynamics of the underlying electrophysiological activity [46]. Using imaging modali-

ties that directly measure neuronal activity at high temporal resolution is an effective

way of overcoming this limitation. EEG and MEG studies have shown that functional

connectivity within whole-brain networks exhibits temporal variability on a seconds

timescale [47, 48]. However, this temporal resolution is also limited by the length of

the sliding time window used to study the inter-regional correlation between time series

[49]. Each window requires large amounts of data, ranging from 2-10 seconds in length

[50]. The length of the time window chosen limited the visibility of either graphical

networks or fast timescale reorganization. This leads to a loss of potentially valuable

information about how networks can rapidly reorganize and coordinate in the brain.

To this end, Baker et al. [51] used MEG data to develop a distinct methodology based

on a hidden Markov model to infer a number of discrete brain states that recurred at

different points in time. This approach was not unencumbered by prior assumptions

about brain areas or timescales involved. Inferred states corresponded to a unique

pattern of spontaneous whole-brain activity underpinned by rapid fluctuations in the

100-200ms timescale, providing a generalized way to study spontaneous brain activity

meaningfully. In the subsequent sections, we will go into a brief overview of the model

itself and the studies on transient brain dynamics using the model.

1.3.1 Hidden Markov Model

A Hidden Markov model is a probabilistic, statistical model used to derive information

from an observable, sequential process that, in turn, is influenced by certain ‘hidden’

or unobservable states. The invisible or hidden states follow a Markov chain (named
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after mathematician Andrey Markov). The probability of an event is modeled to be

dependent only on the state attained in the previous event.

The example shown in Figure 1.2 shows a simple Markov chain in which there are

three states that represent the weather of that day, cloudy, rainy or sunny. Knowing

the current day’s weather allows us to predict how the weather will be on the next

day. The percentages show the probability of state transitions given the current state.

A Markov chain can be thus explained as a process with a finite number of states, in

which the probability of being in any state is dependent only on the previous state.

Figure 1.2: An example of Markov chain. Source: kdnuggets.com (Markov chains)

There are two types of probabilities associated with the state changes in a Markov

chain - transition probabilities and emission probabilities. Figure 1.3 shows the pro-

cess of predicting whether a person will be found walking, shopping or cleaning on a

particular day, depending upon whether the day is rainy or sunny. In the example,

there are two hidden states, rainy and sunny. These are considered hidden because

the observable process outputs are whether a person is shopping, walking or cleaning.

The start probability represents an initial probability of any day being rainy or sunny.

Transition probability represents the transition of one state (sunny or rainy) to an-

other state, given the current state. In this example, the probability of transitioning

from rainy to sunny states is 0.3, given that the current state is rainy. It also includes

the probability of persisting in the same state, which is 0.7 in the case of the current

day being rainy.

Emission probability represents the probability of observing the output (shop,

clean, or walk) given the current state. So, if the current day is sunny, the probability

that a person will be found cleaning is 0.1. What is most important to note is that the

process does not depend on any of the past or future states and is independent of the

path taken by the past state transitions.
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Figure 1.3: Example of Hidden Markov Model. Source: vitalflux.com (Data Analytics)

HMMs have been used in neuroscience in various studies to understand behavior,

neuron assemblies, song-learning in birds, stimulus-response relationships, functional

dynamics, and brain connectivity.

1.3.2 HMM in transient brain dynamics

Since the pioneering study by Baker et al. [51], many studies have employed HMM to

study dynamics in spontaneous neural activity in large-scale transient brain networks.

States resembling fMRI RSNs were seen to exhibit inter-network correlations even at

fast time scales. For example, the well-established phenomenon of anticorrelation of

DAN activation with DMN activation was evident from the low transition probabilities

between these two networks. Vidaurre et al. [52] combined HMM with the multivariate

autoregressive model to make the model capable of capturing multivariate interactions

between brain regions. In this model (HMM-MAR), the observed data corresponded

to a MAR model. Each state was related to a unique set of multi-region autoregression

coefficients, which describes the neural oscillations. The HMM-MAR model could
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thus characterize patterns of oscillatory activity that varied across time, frequency

and spatial location. They used task-related MEG data from a volitional motor task

to study state-specific spectral properties, namely coherence, power spectral density

and partial directed coherence and built time-frequency representations of the same.

They could capture fast dynamical changes at the level of coherence and partially

directed coherence that was not previously possible using sliding window techniques. In

another study by this group, they applied a novel variety of HMM-MAR with embedded

time lags to detect changes in phase locking. The new model, TDE-HMM, modeled

the neural activity over a particular time window using the covariance matrix. They

found specific phase-locking connectivity in the characterized states. The anterior and

posterior higher-order cognitive areas corresponding to DMN were found to operate

in different frequency ranges [53]. For the anterior-cognitive state, phase-locking was

dominant in the delta/theta frequency ranges. On the other hand, the connectivity

in the posterior state was dominated by the alpha frequency range. Quinn et al. [50]

used the amplitude envelopes of time-courses to infer spatial patterns of amplitude

correlations and parallelly used TDE-HMM on raw time-courses. They showed that

rapid switching between brain networks could be estimated without knowledge of any

task parameters or timings using HMM. It can provide a rich understanding of how

the brain reorganizes large-scale networks when performing a task. TDE-HMM was

also found to be more sensitive to spectral content and can explain phase relationships

between regions and task structure at a higher temporal resolution. A general schematic

of the analysis pipeline used in that study is shown in Figure 1.4, which was also used in

the current study. The networks have also been seen to have a temporal organization,

and the brain networks tend to cycle within two sets of states or metastates [54]. This

suggested that the transitions between states are stochastic but not entirely random,

and certain networks are much more likely to follow others temporally. Further, the

time spent visiting each state (fractional occupancy) was also found to be non-random,

which could also be linked to subject-specific behavior. In a recent study, Tibon et

al. (2021) [8] applied HMM to resting-state MEG data from Cam-CAN and tried

to identify how the temporal characteristics of the states related to cognitive tasks.

They used canonical correlation analysis (CCA) to find the relationship between age

and performance on thirteen cognitive tasks to assess five broad cognitive domains -

executive function, memory, language, processing speed and emotion processing. They

found longer occurrences of states involving frontotemporal, higher-order visual and

sensorimotor states and shorter occurrences of early visual states in older adults. Even
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Figure 1.4: General schematic of the analysis pipeline used in employing time delay

embedded HMM to source reconstructed MEG data.

though their analysis did not explain much variance in the cognitive data (about 24%

combined variance explained), they found significant correlation between twelve of the

CCA modes with the temporal characteristics of the HMM states. They also related the

greater occurrences of higher-order states to worse task performance and consequently

lowered fluid intelligence.

1.4 Scope of dissertation

The effect of aging on cognition is a multifaceted, multimodal phenomenon that takes

various factors into account. The age-related changes in functional network dynamics

are well established; however, methodological differences have hindered a complete un-

derstanding of how the brain networks reorganize themselves with age. Previous stud-

ies have successfully characterized resting-state networks using HMM on neuroimaging
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data. We wanted to focus on understanding age-associated differences in these tran-

sient networks and gain interesting perspectives on whether the established effects of

compensatory mechanisms can be seen in a faster, sub-second (100-200ms) timescale.

Our hypotheses were as follows:

1. We computed the activation in each state based on functional connectivity to get

spatial maps of activity patterns. We expected to find age-related differences in

these activation maps and the activation pattern in each state with age. We also

expected to see a difference in overall activation values in each state for each age

group and across age groups.

2. We hypothesized that there would be differences in certain temporal measures in

the transient states with age. We hoped to see decreases in fractional occupancy

correlations of anterior and posterior states with an increase in age. We looked

at state-wise, age-related differences in transition probabilities, fractional occu-

pancy, fractional occupancy correlation, state switching rates, and mean lifetimes.

We wanted to check if these measures can provide an insight into the activation

or deactivation of states.

3. We computed frequency band thresholded spectra for all groups. We hypothe-

sized that there would be decreased global coherence as we go from younger to

older ages. We also looked for significant clusters of higher power, and wanted to

see if the cluster-based coherence or phase lag is more important in driving the

age-related changes in connectivity.

4. Finally, we investigated the changes in within-network connectivity in frequency

band-limited spectra. We also hypothesized that there would be a reduction in

coherence between anterior and posterior regions within a particular state with

age. We also wanted to know if frequency plays a role in the connectivity between

significant brain regions within a network and if the connectivity pattern can give

us an insight into the adaptability of the underlying large scale brain networks

in advanced age.
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Materials and methods

2.1 MEG Analysis

2.1.1 Participants

The study used resting-state MEG data from the CamCAN repository (available at

http://www.mrc-cbu.cam.ac.uk/datasets/camcan/). The dataset is from a large-scale,

multimodal, cross-sectional adult lifespan (18-88) population-based study. In the first

stage of the study, 2681 participants went through general cognitive assessments at their

homes. This population was further screened for poor vision, hearing and neurological

disorders, after which around 700 participants were recruited for the second stage, and

the rest were excluded from further participation. All screened participants were tested

at the Medical Research Council (United Kingdom) Cognition and Brain Sciences Unit

(MRC-CBSU) in Cambridge [55, 56].

2.1.2 Data Acquisition

In a light magnetically shielded room, MEG data were collected using a 306-sensor (102

magnetometers and 204 orthogonal planar gradiometers) VectorView MEG System by

Elekta Neuromag, Helsinki at MRC-CBSU. Data collection was in compliance with the

Helsinki Declaration and was approved by the local ethics committee, Cambridgeshire

2 Research Ethics Committee. The data was sampled at 1kHz with a high pass filter

14
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of cutoff 0.03 Hz. Four head-position indicator (HPI) coils continuously monitored the

participant’s head position inside the MEG helmet. Two bipolar electrodes were used

to record horizontal and vertical electrooculogram signals to monitor eye movements

and blinks. Electrocardiogram signals were recorded using another pair of electrodes

to facilitate the removal of pulse-related artifacts. The resting-state data used in this

study required the participants to sit still with their eyes closed for a minimum duration

of 8 min and 40 s.

2.1.3 Source Reconstruction

From the original data, 200 subjects were randomly selected for source reconstruction

analysis. Fifty participants from each of the following age groups - Young (18-34

years), Early Middle (35-49 years), Late Middle (50-64 years), and Old (65-88 years)

were sampled to ensure homogeneous sampling. Repeated random selections were

performed until a relatively equal split between genders was obtained across each age

group. The data were preprocessed to remove noise from HPI coils, environmental

sources and continuous head motion correction. Max filtering was used to remove the

main frequency noise (50 Hz notch filter). The data was then referenced to a standard

template (Collins27) [57]. MRI segmentation was performed using Freesurfer, and

the boundary element method was used to compute surface triangulation for forward

computation. Standard low-resolution brain electromagnetic tomography (sLORETA)

was carried out in MNE-python for source estimation. Source time-series were epoched

in 5s bins, downsampled to 90 HZ, and projected to 68 brain parcellations according

to the Desikan-Killiany atlas [58].

2.2 Data for hidden Markov modeling

2.2.1 Preprocessing

The source time series of all subjects in each group were permuted to yield matrices

containing a number of time points by a number of regions elements. Time-points

corresponding to the first 1 minute of data was extracted and concatenated across

participants of each group. All subsequent preprocessing was performed using the
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HMM-MAR toolbox [52]. The data was bandpass filtered between 0 and 40 Hz using

a Butterworth filter. To remove strong trends commonly seen in MEG data, a smooth

low-order polynomial function was fit to the data and then subtracted from it. This

removed the linear trends in the data for each channel and trial separately. The data

was then standardized to ensure all trials and channels had the same mean and standard

deviation. Since source reconstructed MEG data is associated with a strong artifactual

correlation between proximal sources, a symmetric orthogonalization method proposed

by Colclough et al. (2015) [59] was used to remove artificial correlations. This was

required to reduce the effects of volume conduction due to signal leakage before any

functional connectivity estimation could be performed.

2.2.2 Source reconstructed dipole ambiguity

One prevalent issue when dealing with source-reconstructed M/EEG data is that the

estimated source data has ambiguous signs due to vague source polarity. The signs

of the reconstructed dipoles may be inconsistent across subjects, which can lead to

suppression of group-level phase relations between two brain regions [50]. The sign

flipping algorithm described by Vidaurre et al. (2018) [53] was used on the data to

find the best combination of flips for our data. This flipped data was used further in

all our analyses.

2.2.3 Time-delay embedded Hidden Markov Model

A Hidden Markov Model (HMM) has been shown to be useful in flexibly characteriz-

ing dynamic data into a set of discrete functional states that reoccur over time. The

dynamics in the brain can be represented as a system moving through distinct hidden

states, which are mutually exclusive, i.e. at one time point, only one state is active.

However, since HMM is a probabilistic model, the inference process assigns a proba-

bility of being active to each state at each time point. For a Markovian process, this

probability of a state being active at any time point t, depends on which state was

active at time point t-1 (order-one Markovian) (see Figure 1.2 for more details). It

is important to note that the states are hidden and not directly observable from the

raw data; thus the model assumes that data observed in each state are drawn from a

probabilistic observation model. When the system is in a particular state, the observed
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data is drawn from that state’s observation model (with its own model parameters),

which defines a probability distribution. For this study, we used a type of HMM that

allows us to detect changes in both power and phase. Using this approach, the obser-

vation distribution is described as the neural activity over a particular time window

using a Gaussian distribution with zero mean [53]. Essentially, the covariance matrix is

used to model the autocovariance (lagged cross-covariance) across regions during that

time window. For the time points in which a particular state is active, the model can

effectively capture patterns of linear synchronization and thus can describe state-wise

phase-locking. The source time series for each region was embedded with fifteen time

delay lags (-7 to 7). PCA was performed on the embedded data to avoid overfitting and

reduce the computational load. The number of principal components is responsible for

determining the range of frequencies that are available to the HMM. As PCA tries to

explain the highest possible amount of variance in the time-series data, and the power

or variance of the electrophysiological data is most concentrated in slower frequencies

(1/f nature), a total of 136 components (twice the number of regions) were used to

allow the model to be sensitive to higher frequencies as well [51].

2.2.4 Similarity between inferences

The HMM was run multiple times, and the result of each iteration was qualitatively

compared. The statistical dependence between the state time courses between two runs

can measure the similarity between two HMM inferences. Out of ten runs, the HMM

result with the lowest free energy and highest similarity with other runs was selected

for further analysis.

2.2.5 Age-wise group HMM estimation given state course

probabilities

Since we wanted to see age-related differences in transient state dynamics, we used

the HMM results obtained from running the inferential process on the entire data

and re-inferred the states to attain group-specific states. The data was previously

standardized using the entire data set so that the properties of the group-specific data

do not change drastically with respect to the rest of the data. The HMM inference
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was then run separately for all four age groups (Young, Early-Middle, Late-Middle and

Old).

2.3 Resting State Temporal Dynamics

From the estimated probabilistic state time courses, we compared several measures

of temporal dynamics of these transient brain states across age groups. The main

temporal features we investigated include:

2.3.1 Transition Probabilities

To assess the relationship between different functional networks, the transitions be-

tween inferred states was calculated as the probability of transitioning to any other

state, given the current state (without considering persistence probabilities).

2.3.2 Fractional Occupancy

Fractional occupancy (FO) is the proportion of time spent by the system in each state.

Assuming any state is either on or off at any time-point (hard classification by choosing

the most probable a posteriori state), fractional occupancy can be calculated as:

fractional occupancy (k) =
1

T

∑
t

(ut == k)

where, ut == k is one if ut = k and is zero otherwise, k is any state and T is the length

of state sequence in samples. FO and FO correlation between states were compared

across all age groups to study cross network interactions.

2.3.3 Dwell Times

Dwell time or state lifetime is the average amount of time spent in each state before

the system transitions out of that state. The dwell time of a particular state reflects
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the temporal stability of the states.

mean life time (k) =

∑
t(ut == k)

number of occurrences (k)

where, the number of occurrences is given by:

number of occurrences (k) =
∑
t

(((ut == k)− (ut − 1 == k)) == 1)

2.3.4 State switching rates

State switching rates provide a measure of stability per subject for each session or trial.

This provides a group level measure of the average switching rates between all states

for that particular age group.

2.4 Spectral Statistics

2.4.1 Spatial activation maps

Custom scripts from OHBA Software Library (OSL) were used to visualize the state-

wise activation pattern in brain space. The first eigenvector of the covariance matrix

was taken as a measure of functional connectivity between brain regions. Custom

scripts were written in MATLAB to map voxel-level activation to corresponding parcels

automatically. The activated brain regions in each state were compared across age

groups and categorized into networks resembling fMRI resting-state networks.

2.4.2 Non-parametric estimation of state spectra

Since the HMM estimation of state time-courses did not employ any MAR order or

fixed sliding window length, we used a non-parametric, state-wise multitaper approach

proposed by Vidaurre et al. (2016) [52] to obtain the states’ spectral information

without any PCA-induced bias. The inferred HMM state time courses are used as

temporal windows to estimate state-specific spectral properties using a weighted version

of the multitaper. The non-parametric approach is more accurate and robust as it can
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make more efficient use of the data by not constraining the temporal resolution of the

changing patterns of the neural data.

2.4.3 Change in global coherence and phase coupling

We calculated subject-specific global coherence and phase lag index between brain

regions in both wideband and narrowband limited frequencies from the state spec-

tra for all age groups as described above. Data-driven spectral decomposition into

frequency bands closely resembling classical frequency bands (e.g. theta, alpha and

beta bands) was performed using the spectdecompose.m function from the HMM-MAR

toolbox. This algorithm performs non-negative matrix factorization on the matrix of

spectrally defined coherence across all states and pairs of regions. We wanted four com-

ponents such that we could capture the spectral profiles of the required frequency bands

(delta/theta, alpha, beta and low gamma) in the components. After decomposition,

the spectral profiles were checked to see if they corresponded to canonical frequency

bands (i.e. if the modes had a clear peak) and were re-inferred as required. Since

our data were bandpass filtered to have a 40 Hz upper limit, we focused our analysis

on the first three components and excluded the fourth (low gamma band) component

from further analysis. Wideband coherence and PSD were also computed for all age

groups by setting the number of components required to two, corresponding to average

coherence and PSD values across all frequency bins. We extracted the clusters which

contained higher power than the global average in all states. The clusters common in

all age groups were selected for further investigation of within-network, cluster-based

analysis of coherence and phase coupling.

2.4.4 Connectivity analysis

To study the connection strength between different brain regions in specific frequency

ranges, we used cluster based coherence and PLI values, as described in the previous

section. The instantaneous phases obtained from the non-parametric state spectra

estimation were averaged across participants in each age group in the theta, alpha

and beta frequency ranges. PLI is known to provide a reliable estimate of phase

synchronization and is robust against the presence of common sources, and volume
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conduction [60]. The PLI was calculated as:

PLIij = | < sign(∆ϕt) > |, 0 ≤ PLIij ≤ 1

Here, the sign function yields: 1 if ∆ϕt = 0; and -1 if ∆ϕt < 0.

Coherence and phase-based connectivity were quantified in those specific parcels of

the brain depending on the frequency band thresholded power spectra. The signif-

icant measures were represented as connection strengths (thresholded to show 50%

strongest connections) between brain regions as circular plots [61] depicting nodes on

the circumference and lines connecting two nodes to show the connection.

2.4.5 Statistical Analysis

Statistical tools used for quantifying differences between the studied property across

age were mainly Two-way analysis of variance (ANOVA) and multiple comparisons

of means (using Bonferroni correction). Post-Hoc Tukey’s test was used to highlight

statistically significant differences between the groups. In most of the comparisons

(unless mentioned otherwise), a 4× 8 design is used, which considers the main effects

of the four age groups and the eight inferred states. The Fisher’s F statistic is used to

determine the ratio of variances explained by the group means and is calculated as:

F =
explained variance or between group variability

unexplained variance or within group variability

where, explained variance =

∑K
i=1(ni(Yi − Y )2)

K − 1

Yi denotes the sample mean in the i-th group, ni is the number of observations in

the i-th group and Y is the overall mean. K denotes the number of groups in the data.

The unexplained variance is =

∑K
i=1

∑ni

j=1(Yij − Yi)
2

N −K

where, Yij is the jth observation in the ith out of K groups. N is the total sam-

ple size.

All significance measures are performed with an alpha level of 0.05 (95% interval of

confidence).
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Results

3.1 The activation pattern of states follows a dis-

tinct trend with age

Eight transient brain states were inferred from applying the HMM model to the data

for all age groups in a completely data-driven manner. These states reveal unique

spatial patterns of functional activity which resembled resting-state networks previ-

ously characterized using fMRI techniques. From the inferred states, States 1, 2 and

6 resemble the default mode network while other states resemble sensory networks.

The spatial activity patterns of States 3, 4, and 8 resemble the visual networks, and

States 5 and 7 resemble frontoparietal networks. However, due to spatial ambiguity in

source reconstructed MEG data, an exact match of these states to particular networks

was not possible. From here on, we will stick to the nomenclature ‘HMM-States’ to

denote the recurrent patterns of activity modeled by the HMM. The covariance matrix

of each state over all the lagged time windows used to model the states were used to

generate volume and surface activation maps of functional activation. Each of these

states described brain activity in terms of power and coherence covariations and is

temporally resolved. Figure 3.1 shows the pattern of activation in each age group for

states arranged in ascending order. State 1 and State 2 were seen to have higher overall

whole-brain activation in all age groups, except in the late middle-aged group, where

the brain exhibits the highest functional connectivity in State 8 compared to all other

states. Two-way ANOVA performed on the whole brain activation values showed a

22
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significant main effect of state (F (7, 2175) = 148.19, p < 0.001) with State 2 having a

larger activation (M = 0.0097, SD = 0.00041) than all other states. The main effect

of age (F (3, 2175) = 7.22, p < 0.001) was also significant, with late middle age group

showing higher mean activation value (M = 0.003). We also found a significant effect

of the interaction between states and age (F (21, 2175) = 101.77, p < 0.001).

Figure 3.1: Mean activation in each age group: States are arranged in ascending order of

mean functional activation in each age group. The red line signifies the mean activation

in each state over all brain regions, the black line signifies the median.

All the states were also seen to have spatial activation in both the anterior and

posterior regions, with the exception of State 3 in all age groups and State 5 in three

of the age groups. Cluster-based statistical testing performed on the common parcels

getting activated in all age groups in a particular state revealed the overall trend in

the change of activation pattern with age (Figure 3.2). We found a significant effect
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of age for all states (p < 0.001), except State 2 (F (3, 51) = 0.47, p = 0.7). Thus,

in State 1, even if the overall mean functional connectivity remains high compared to

all other states, there is a decreasing trend with age. This could suggest functional

reorganization of the underlying brain networks to keep the overall activation high

in particular networks or brain regions to counteract the detrimental effects of aging

on cognitive performance. Activations in the clusters of all other states were seen to

change non-linearly with age (p < 0.05).

The volumetric and surface maps of the activation patterns are shown in Figure

3.3 and Figure 3.4 respectively. We performed Post-Hoc Tukey’s test to compare all

pairs of means and control the family-wise error rates. All the statistical differences

in a pair of states in both whole-brain and cluster-based functional connectivity are

summarized in the Tables 5.1 and 5.2.



Figure 3.2: Statewise parcel activation compared across age groups: Comparison of

the mean activation value in activated clusters or regions in each state across all four

age groups. The red line inside each box signifies the mean.
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3.2 Temporal Dynamics

3.2.1 The probability of transitioning between states remain

stable with age

The large-scale brain networks or HMM states are described by assuming mutual ex-

clusivity of the states at any time point. However, since the recruitment of states at

any time point is the probability of a state being active and not an absolute value,

we can utilize the probabilistic state time courses to study transitions between states

as a measure of the underlying cross-network interactions and state dynamics. The

transitions from the dominant state at any given time point to another state at the

next time point for all age groups are shown in Figure 3.5. Two-way analysis of vari-

ance revealed a significant main effect of state (F (7, 255) = 29.86, p < 0.001). The

main effect of age on transition probabilities did not show significance (F (3, 255) =

7.5e-30, p > 0.5) In all age groups, the probability of transitioning to State 6 from any

other state was found to be significantly higher (M = 0.34, SD = 0.02) whereas State

3 showed the lowest transition probability (M = 0.008, SD = 0.019). The pairwise

comparisons between the transition probabilities of all states are provided in Table 5.3.
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Figure 3.5: Transition probability across all age groups

3.2.2 Fractional Occupancy of states in all age groups

The percentage of trials that a particular state occupies was measured from the prob-

abilistic state time courses as described in the Methods section (see Section 2). State

6 had a significantly higher fractional occupancy in all age groups. This is also sup-

ported by the previous result, which shows that there is a higher probability of the

brain visiting State 6 from any current state (see Figure 3.5). Two-way analysis of

variance yielded a main effect of state (F (7, 19199) = 1653.4, p < 0.001), but not with

age (F (3, 19199) = 5.01e-29, p > 0.5) at the chosen significance level. The signifi-

cance values, when corrected for multiple comparisons, revealed that in all age groups,

State 1 and State 4 are seen to have similar fractional occupancy time windows and do
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not differ significantly from each other (p = 0.09) in the 95% confidence interval, but

reaches significance at the 90% confidence interval. However, the interaction effect of

age and state was found to be significant (F (21, 19199) = 7.41, p < 0.001).

Figure 3.6: Fractional Occupancy of each state across all age groups

The fractional occupancy can also give us an insight into the cross-network con-

nections between each state. The HMM state definition assumes mutual exclusivity

within the states and probabilistically chooses the most dominant (most likely to be

active) state at any time point. The probabilistic nature of the time courses allows

us to study the correlation between the probability of two states being active simul-

taneously. In a way, this gives us cross-network functional connectivities by allowing

us to see which two networks are more likely to get activated together. Conversely, it

also allows us to see which networks act antagonistically to each other and rarely get

activated at the same time. Statistical tests showed a significant main effect of states

on explaining the variability in the data (F (7, 255) = 3.53, p = 0.001). The main effect

of age and the interaction term were not statistically significant (p > 0.1). Post-Hoc

Tukey’s test showed that State 2 has a larger mean fractional occupancy correlation

with other states (M = -0.02, SD = 0.03). State 6 was seen to have the lowest mean

(M = -0.17, SD = 0.03) correlation with other states. The high transition probability

of the brain to switch to State 6 is further supported by this result as other states are
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not seen to co-activate along with State 6 but rather switch to State 6.

(a) Young (b) Early Middle

(c) Late Middle (d) Old

Figure 3.7: Fractional Occupancy correlation: Correlation matrix between the frac-

tional occupancy time courses of each state for a) Young, b) Early Middle, c) Late

Middle, d) Old age groups. Positive correlations between states indicate that the two

states are visited together more frequently during similar timepoints.

3.2.3 The mean lifetime of a state’s activation

The mean lifetimes of the states were calculated by averaging the total number of time

points each state spends on a trial. A threshold of fifty time points was selected to

define the lifetime at each state visit. Figure 3.8 shows the mean lifetimes of the states

in ascending order in each age group. Two-way analysis of variance with age and states
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as main effects yielded a significant effect of states (F (7, 31) = 3.53, p = 0.01) but not

with age (F (3, 31) = 1.53, p = 0.23). Corrections for multiple comparisons showed that

in all age groups, the mean lifetimes for State 3 (M = 21.56, SD = 10.3) and State 8

(M = 25.5, SD = 10.3) are significantly lower than all other states. Additionally, State

3 failed to meet the threshold criteria of being activated for at least 50 time points in

all age groups except the old group. State 4 had the largest mean lifetime (M = 68.6,

SD = 10.3) among all states.

Figure 3.8: Mean lifetimes of the states in each age group. The black line inside each

violin denotes the mean of the distribution. The median is indicated by a red line.

A higher mean lifetime indicates fewer fluctuations and more stability of a particular

state.
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3.2.4 State switching rates

The state switching rates provide a measure of the stability of the states in each age

group. A subject-wise analysis of the temporal stability of each state revealed that the

switching rate of the young and early middle-aged groups differed significantly from

the other two age groups (p < 0.001). Multiple comparison analyses also showed that

there are no significant differences between the state switching rates of young and early

middle-aged groups (p = 0.99) as well as late middle and old aged groups (p = 0.22).

The mean state switching rate was found to be higher in the late middle-aged group (M

= 0.075, SD = 0.0004), however, it was not that much higher than the other age groups.

Differences between the switching rates of a pair of age groups were quantified after

correcting for the family-wise error rate. The young and early middle-aged group had a

significantly lower switching rate than the late middle and old age groups (p < 0.001).

Figure 3.9: Mean state switching rate in all age groups

These measures of fractional occupancies, mean lifetimes of the states and state

switching rates together constitute the ‘chronnectome’ of the HMM states.
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3.3 Spectral Dynamics

3.3.1 Change in state specific global coherence with frequency

In different frequency bands, large scale functional connectivity between whole-brain

networks has been seen to show different power and phase coupling patterns. We

wanted to see how the whole brain correlation of power in different states in different

frequency bands varies with age. For all age groups, we performed a data-driven de-

composition of the whole brain spectral features into specific frequency bands, namely

wideband (0.5-40 Hz), theta (0.5-10 Hz), alpha (5-15 Hz) and beta (15-30 Hz). These

frequency bands are named based on their resemblance to classical frequency bands,

which are not precisely the same as the classical theta, alpha or beta bands. Figure 3.10

shows the spectral profiles of the data-driven decomposition into frequency bands and

the corresponding modes of all age groups. In all age groups, the spectral profile looks

more or less similar in particular bands and have peaks that correspond to classical

frequency bands.
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(a) Wideband spectral profile (b) Theta band spectral profile

(c) Alpha band spectral profile (d) Beta band spectral profile

Figure 3.10: Spectral Profile: Data driven decomposition of the spectra in all age groups

resulted in the division of a) wideband (0-40 Hz) spectra into three different frequency

modes. The peak frequency (modes) obtained in the spectral profiles resembles the

classical b) theta (0.5-10 Hz), c) alpha (5-15 Hz) and d) beta (15-30 Hz) ranges in all

age groups.

Previous studies have shown that global coherence also increases with an increase

in power. We first looked at whole-brain coherence between regions in each state and

compared the coherence levels across age groups. In the wideband condition, there

is no thresholding of the frequency, and the coherence values are averaged across all

brain regions to access the full spectral resolution. On the other hand, for the theta

band thresholded global coherence, the coherence between brain regions in the 0.5-10Hz

frequency range. Similarly, for alpha and beta band global coherence, the spectra were

filtered from 5-15 Hz and 15-30 Hz, respectively. The states were arranged to show lower
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to higher average coherence values in each age group. Interestingly, even though the

absolute value of coherence changes across age groups, the pattern of global coherence

between the states remained the same in a particular age group in all frequency bands.

Figure 3.11-3.14 shows the trend of low to high coherence values, and the sequence of

states in each age group remains constant in all frequency bands.

Figure 3.11: Global coherence in all states: Global coherence over all pairs of regions

in the wideband frequency range, plotted in the increasing order of mean coherence for

all age groups. Mean coherence for each state is marked in red.

Figure 3.11 shows increased global coherence in State 3 followed by State 2,

State 4 in the wideband frequency range. The sequence of states showing low to high

values is different in all age groups. The absolute values can also be seen to consistently

decrease as we go from the young age group to the older age groups. Two-way ANOVA

yielded significant main effect of age (F (3, 2175) = 2070.9, p < 0.001) as well as states

(F (7, 2175) = 1599.6, p < 0.001). Additionally, the interaction effect between the

two measures of comparisons was also found to be significant (F (21, 2175) = 222.61,
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p < 0.001). The overall mean global coherence was larger in State 3 (M = 1.44) and

least in State 5 (M = 1.03). In the wideband thresholded spectra, the young group

had an overall higher global coherence (M = 1.36, SD = 0.002). Post-Hoc Bonferroni

correction further showed significant differences in the global coherence between all age

groups (p < 0.001).

Figure 3.12: Global coherence in all states in the theta frequency range: Global coher-

ence over all pairs of regions in the theta band frequency range plotted in the increasing

order of mean coherence for all age groups. Mean coherence for each state is marked

in red.

The decrease in absolute coherence values is also noticeable in the theta band

thresholded frequency range. The sequence of the states is again different in all age

groups, however, it matches the sequence in wideband ranges in a specific age group.

This suggests that resting-state global coherence between regions in a particular state

reorganizes in a manner to keep the coherence relatively constant as a person grows

older. From figures 3.12 and 3.13, we can see a reverse pattern of global coherence in
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theta and alpha frequency ranges. The coherence in the theta range is high in the young

group and gradually decreases with age and again increases in the old group. Statistical

testing using two-way ANOVA revealed significant main effects of age (F (3, 2175) =

1653.3, p < 0.001) and state (F (7, 2175) = 1640.1, p < 0.001) in the theta band

global coherence. The interaction term was also found to be statistically significant

(F (21, 2175) = 214.22, p < 0.001). The mean global coherence was highest in the case

of State 3 (M = 0.65) and least in State 5 (M = 0.45), just like the wideband condition.

However, in the theta band, the young group was found to have the largest (M = 0.74,

SD = 0.001) mean global coherence. The lowest mean coherence was seen in the case

of the late middle-aged group (M = 0.34, SD = 0.001).

Figure 3.13: Global coherence in all states in the alpha frequency range: Global coher-

ence over all pairs of regions in the alpha band frequency range plotted in the increasing

order of mean coherence for all age groups. Mean coherence for each state is marked

in red.

In the alpha band (Figure 3.13), the coherence can be seen to be relatively lower
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in the young group, increases with age and then decreases in the old group. Again,

there were significant main effects of age (F (3, 2175) = 2866.2, p < 0.001), states

(F (7, 2175) = 1323.9, p < 0.001) and a significant interaction term (F (21, 2175) =

320.24, p < 0.001). However, one major difference seen in the alpha band compared

to the theta band was that the largest mean global coherence was found in the late

middle-aged group (M = 0.74, SD = 0.0013) and the least in the old group (M =

0.32, SD = 0.0013). State 3 (M = 0.63) and state 6 (M = 0.45) were found to have

the largest and the smallest mean coherence, respectively. Figure 3.14 shows the same

sequence of states in particular age groups, and a non-linear trend of change in global

coherence values with significant main effects of age (F (3, 2175) = 2253.9, p < 0.001)

and state (F (7, 2175) = 1277.3, p < 0.001). The effect of the interaction term was

also significant in this case (F (21, 2175) = 203.48, p < 0.001). Similar to the alpha

band thresholded spectra, State 3 showed the largest mean coherence (M = 0.69) and

State 6 showed the least mean coherence (M = 0.51) compared to other states. The

early middle-aged group also showed the lowest mean coherence (M = 0.27) in the beta

band. The largest mean coherence was seen in the case of the late middle-aged group

(M = 0.74, SD = 0.0014)



Figure 3.14: Global coherence in all states in the beta frequency range: Global coher-

ence over all pairs of regions in the beta band frequency range plotted in the increasing

order of mean coherence for all age groups. Mean coherence for each state is marked

in red.

3.3.2 Global coherence in theta and alpha bands show inverse

age-related trends

We wanted to see how the global coherence in a particular state changes with age in

each frequency range. All states except State 1 showed a generally decreasing trend

with age in the wideband condition (Figure 3.15). In the theta frequency range, all

states showed a U-shaped global coherence change with age. The maximum global

coherence in the young group gradually decreases in the early and late middle-aged

groups and again increases in the old group (Figure 3.16). This consistent pattern

could give us important insights into the compensation hypothesis of aging, which

suggests an increase in theta band power in response to a related decrease in alpha band



power as a person gets older. Two-way ANOVA and subsequent correction for multiple

comparisons showed that the differences between the coherence measures of each state

compared across age groups were highly significant (p < 0.001) for all frequency bands.

A significant main effect of frequency was also found in all states when compared along

age groups (p < 0.001). The mean coherence was found to be higher in the beta

band for all states (0.51 < M < 0.69). The pattern of change in global coherence in the

alpha band indeed showed an upside-down U-shaped trend with age (Figure 3.17). This

suggests that frequency plays an essential role in reorganizing transient brain networks

to compensate for the dynamical changes associated with healthy aging. A non-linear

trend of change in global coherence was seen in the case of beta band thresholded

spectra (Figure 3.18). Previous studies had not seen any correlation between global

coherence in the beta band with age. However, the consistent pattern of coherence in

all states reveal a decrease in whole-brain coherence in the early middle-age, followed

by a sharp increase. This could be indicative of a generalized increase in modularity

or non-specific connections between brain regions, to prevent loss of overall cognitive

power. Previous studies have found a decrease in motor performance with increased

beta power in older adults. However, the increased power was not predictive of motor

performance [62].
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Figure 3.15: Comparison of change in coherence in the wideband frequency range for

each state across all age groups. The box plots show the mean and distribution of the

global coherence in the wideband thresholded power spectra. Mean coherence for each

age group is marked in red.
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Figure 3.16: Comparison of change in coherence in the theta band (0.5-10 Hz) frequency

range for each state across all age groups. The box plots show the mean and distribution

of the global coherence in the theta band thresholded power spectra. Mean coherence

for each age group is marked in red.
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Figure 3.17: Comparison of change in coherence in the alpha band (5-15 Hz) frequency

range for each state across all age groups. The box plots show the mean and distribution

of the global coherence in the alpha band thresholded power spectra. Mean coherence

for each age group is marked in red.
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Figure 3.18: Comparison of change in coherence in the beta band (15-30 Hz) frequency

range for each state across all age groups. The box plots show the mean and distribution

of the global coherence in the beta band thresholded power spectra. Mean coherence

for each age group is marked in red.
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3.4 Network Connectivity

3.4.1 Phase based connectivity in the brain does not show

dynamic changes with age

An important question to consider was whether the coherence connectivity is driven

only by the power or if there is a significant contribution of phase coupling also that

drives the connectivity between brain regions in particular transient states. We wanted

to investigate which measure was more significant in driving the age-related connectiv-

ity changes between the brain regions and focus our analysis on the theta and alpha

bands because of their implication in aging, as suggested by previous studies. We used

phase lag index (PLI) to check for phase connectivity and synchronization between

two brain regions. Interestingly, when the whole brain phase lag index in all states are

compared across age groups, it shows a different pattern than coherence (Figure 3.19

and Figure 3.20). The highest PLI value was found in State 5 (M = 0.005) and the

early middle-aged group (M = 0.003) in the theta band. In the alpha band, State 5

again showed a larger mean PLI (M = 0.007) along with an overall higher mean in the

late middle-aged group (M = 0.0036).
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Figure 3.19: Phase lag index: Comparison of strength of phase coupling in each state

in the theta frequency range along each age group. Mean phase lag index for each state

is arranged in ascending order for all ages.
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Figure 3.20: Phase lag index: Comparison of strength of phase coupling in each state

in the alpha frequency range along each age group. Mean phase lag index for each

state is arranged in ascending order for all ages.

PLI of brain regions thresholded in theta and alpha narrowband ranges show

different patterns. We performed two-way ANOVA to quantify PLI changes with age

and state as the main factors. We found a significant main effect of states on the PLI

values, but the main effect of age was found to be insignificant in the 95% confidence

interval in both theta (F (3, 2175) = 2.38, p = 0.06) and alpha (F (3, 2175) = 0.31,

p = 0.81) frequency ranges. Post-Hoc Tukey’s test did not reveal any significant

changes in PLI values with age (p > 0.1). Additionally, the interaction effect also did

not reach statistical significance in both bands (p = 0.89 and p = 0.74). See Tables 5.4

and 5.5 for all the summary statistics between PLI measures of different age groups.
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3.4.2 Connectivity analysis in specific parcels of power acti-

vation

Cluster-based statistical testing was employed to understand the change in coherence

in specific networks with age and frequency. Clusters of brain regions commonly acti-

vated in all age groups in particular frequency bands were selected for further analysis.

Volumetric brain maps were generated with the power spectral density in each state

and a particular frequency band to show activation in the brain space. These maps

showed similar activation across ages, and the common parcels were identified. The co-

herence values corresponding to these parcels were studied to see how the connectivity

pattern changes with age and frequency. Thus, coherence was seen to drive connectiv-

ity changes across age, both globally and in particular parcels of interest. In contrast,

phase-based connectivity was only found to drive global connectivity changes and not

in specific clusters. In each state, the thresholded PLI values between the cluster nodes

were not found to be statistically significant after multiple corrections (see Table 5.7

for comparisons between cluster based PLI values between all age groups). Thus, we

decided to compare the connectivity among age groups in terms of coherence (See Table

5.6 for comparisons between cluster based coherence values between all age groups).

Two-way ANOVA was performed in a 4 × 8 factorial design with age and states as

the main factors to check if the cluster-based coherence showed significant variabil-

ity with age. Main effects of age (F (3, 2175) = 47.49, p < 0.001 and F (3, 2175) =

99.53, p < 0.001, respectively) and state (F (3, 2175) = 15.83, p < 0.001 and F (3, 2175)

= 46.14, p < 0.001, respectively) for both theta and alpha bands were found to be

significant.

The circular connectivity plots show the connections between two brain regions

(indicated by the nodes, which signify parcel numbers or brain regions). Figures 3.21-

3.28 show the side-by-side connectivity plots in theta and alpha band thresholded

spectra, based on coherence between two nodes in a cluster. The coherence values are

thresholded to show the 50% strongest connections.
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From Fig. 3.21a, we can see that in the young group, there are many connections

between bilateral rostral and caudal middle frontal regions, bilateral superior frontal,

superior parietal and superior temporal regions. Right rostral and caudal anterior cin-

gulate cortex and inferior parietal lobe are also coherence-based connectivity in the

theta range. Parcel-wise connection strength in mostly the frontal regions survives as

we go from young to early middle-ages. Almost no parietal or temporal connections

survived the thresholding criteria in the late middle-aged group. Interestingly, in the

old age group, the connections between bilateral inferior parietal, superior parietal and

middle temporal are again seen to have significant connection strength between them-

selves and the frontal regions. Thus, theta band coherence and connection strength

between brain regions were found to remain stable in the frontal areas and deteriorate

in the posterior areas of the brain with age. The coherence based connection strength

between anterior and posterior regions is again seen to increase in the old age group

in the theta frequency range. In the alpha band thresholded connectivity maps shown

in Fig. 3.21b, State 1 shows high connectivity in posterior regions, mainly bilateral

occipital and parietal areas with some connections in the rostral middle frontal areas

and right superior frontal areas in both the middle-aged groups. In young and old

groups, the connectivity is lower and mainly contained in posterior regions like bilat-

eral cuneus, precuneus, and left fusiform areas. Comparison between the connection

strengths across frequency in 4× 2 (age, frequency bands) revealed a significant main

effect of frequency (F (1, 543) = 10.12, p = 0.0016) and an interaction effect (F (3, 543)

= 19.97, p < 0.001) for State 1, with higher mean connectivity in the theta band (M

= 0.021) than the alpha band (M = 0.01).
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In State 2 (Fig.3.22a) and State 3 (Fig. 3.22a) the young age group shows

connectivity in frontal as well as parietal and temporal regions in the theta band. Con-

nectivity in State 3 also includes connections in the right postcentral and precentral

regions and left lingual and posterior cingulate cortex. State 2 shows a similar trend

as State 1 across age, where only the frontal connections remain stable with age. In

State 3, however, in addition to significant frontal connections, posterior connections

also survive the threshold. In the old group, both states show a pattern of connec-

tivity similar to their young counterpart. In the case of the alpha band, State 2 (see

Fig.3.22b) shows high connectivity among the left inferior temporal, left inferior pari-

etal, left middle temporal, right caudal middle frontal and superior frontal regions in

both middle-aged groups. Very few connections survive the threshold between the

young and old age groups, mostly between the parietal regions. In Fig.3.23b) we can

see that the connectivity is generally very high, spanning bilateral lingual, bilateral

anterior and posterior cingulate, left superior parietal, precuneus, precentral and para-

central regions, as well as right inferior parietal, inferior temporal, superior parietal,

superior temporal, superior frontal and orbitofrontal regions. Again, this whole-brain

anterior-posterior connectivity is significantly reduced in the young and old age groups,

and the only connections that survive are the temporal and parietal connections. The

interaction effect is significant in both States 2 and 3 (F (3, 543) = 8.23, p < 0.001 and

F (3, 543) = 32.4, p < 0.001 respectively), with a higher overall mean in the alpha band

(M = 0.0068 and 0.08 respectively).
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The mean connection strength is found to be higher in the theta band for States

1, 7 and 8 (M = 0.014), and in the alpha band for all the other states (M = 0.021).

This connectivity pattern is maintained in all states, where the young and old

age groups have significantly reduced connectivity between the posterior and anterior

regions in the alpha range and middle-aged groups in the theta range. The previous

results show the inverse behavior of alpha and theta coherence with age. We now

see that the connectivity pattern between brain regions in these frequency bands also

follows an inverse relationship. This further supports the hypothesis that brain net-

works reorganize themselves in specific frequency bands and compensate each other

to maintain cognitive performance in the face of aging. High theta band connectivity

between anterior and posterior regions in all states in young and old age groups may

help compensate for the lower connectivity in these age groups in the alpha band. On

the other hand, the higher connectivity between anterior and posterior regions in the

alpha band in the middle-aged groups helps maintain overall cognitive performance.

Another interesting phenomenon observed is that the only connections between

clusters that survive thresholding are the connections between posterior regions in

the alpha range and the anterior connections in the theta range. The overall lowered

connectivity in the theta band in early and late middle-aged groups still showed some

connectivity in the anterior regions. Again, the reduced connectivity in the young

and old age groups preserved the posterior connections in the alpha band. This also

suggests that the reorganization of the underlying brain networks ensures that whole-

brain connectivity remains unaltered in the face of aging, and the dominant frequency

plays a vital role in such reorganization.



Chapter 4

Discussion

In this study, we used the Hidden Markov Model (HMM) to investigate the dynamics

between large scale resting-state brain networks and their alteration with age. There

were four age groups considered - Young (18-34 years), Early Middle aged (35-49 years),

Late Middle aged (50-64 years), and Old (65-88 years). The HMM algorithm helps

characterize recurrent patterns of spatial activation that repeat in time in an entirely

data-driven manner. We used the model on source-reconstructed MEG data from 200

participants to quantify the temporal and spectral changes observed in these transient

networks with age. The main findings of this investigation are as follows:

1. Eight transient states inferred from the source reconstructed MEG data resem-

bled higher-order brain networks, visual networks and sensorimotor networks.

However, not all states were found to have an exact match in their spatial activa-

tion pattern as previously established fMRI resting-state networks. This might be

due to limited data points considered in the analysis (only one minute of record-

ing was used), which led to only a few networks showing dynamically recurrent

behavior with time. Another possibility is that the activity of the underlying

networks is not explained by just one state but by a combination of states in

time. In a study by Viduarre et al. (2018), it was seen that two different states

were describing the anterior and posterior areas of the default mode network sep-

arately [53]. Further, another study by the same group used fMRI data to reveal

that states might be hierarchically organized into two metastates which describe

higher-order cognition and sensory and motor networks [54].

61
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2. The spatial activation pattern showed similarities across all age groups; however,

the absolute mean activation showed some age-related differences. Activation in

State 1 was overall higher for all age groups except the late middle-aged group.

The states themselves showed different patterns of activation values in specific

clusters when compared across ages. While the trend was non-linear in most

states, State 1 showed a decreasing trend, and State 3 showed an increasing

trend with age. Our findings highlighted that the mean activation quantified

from functional connectivity over all states does indeed decrease with age. This

is in accordance with previous studies which investigated the relationship be-

tween functional connectivity and age [41]. Moreover, within network (or here,

within state) functional connectivity also shows interesting patterns with age.

The increasing-decreasing activation dynamics within each state could also sug-

gest the adaptive crosstalk between the underlying functional brain networks to

alleviate the effects of age-related decline.

3. We compared the temporal characteristics of the inferred HMM states between

age groups to quantify the changes caused due to advancing age. The variability

in the temporal characteristics gives us an interpretation of the underlying net-

work dynamics of the dominant state at each point in time. Our analysis of the

temporal characteristics yielded the following results:

(a) The transition probability of switching from one given state to another state

at the next time point gives us an idea of cross-network interactions in the

brain. A high transition probability suggests that some networks are more

likely to follow others in time. Since HMM states are mutually exclusive, but

the time courses are probabilistic, we can also get an idea of the temporal

overlap or co-activation of these networks. This can also tell us if certain

networks show an antagonism that would be evident from the low transition

probabilities between them. Baker et al. (2014) [51] found a very low

transition probability between DMN and DAN networks which are known

to rarely co-activate, and one network must be suppressed for the other

to get activated. We did not find age-related differences in the transition

probabilities between states. The tendency of all states to make a switch to

State 6 was found to be higher in all age groups. State 6, which resembled

DMN, the brain’s default state, has been shown to be the dominant network

in the resting brain. Thus, the higher probability of the brain transitioning

from all networks to the DMN network makes neurophysiological sense.
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(b) Fractional occupancy is another temporal measure which can provide an

insight into the cross-network dynamics between transient brain states. The

correlation between fractional occupancies of two states shows us how likely

will two states activate together. In all age groups, States 1 and 3 and States

2 and 8 are seen to be more likely to activate simultaneously. However, if

we compare each state’s fractional occupancy with its counterpart in other

age groups, we find a significant effect of the interaction between age and

states, which is difficult to interpret directly. A change in the total time in

a trial during which a state remains active could ultimately lead to a change

in co-activation between states, which suggests a weakening of functional

connectivity between brain regions.

(c) Differences between state switching rates and mean lifetimes of each state

across ages give us important information about the temporal stability of

the states. State 3, for example, is not found to be active for more than

50ms at a time in most age groups, leading to higher instability than any

other state. The spatial map of State 3 suggested that it might describe a vi-

sual network, which can be explained to show more random activations and

instability in the eyes-closed state. A decrease in the state’s lifetime could

be interpreted as more fluctuations or faster transitions between states as a

person grows older. Vidaurre et al. [54] showed that the time spent visiting

each state and the time during which a state remains active is not random

and could be acting as a preparatory stage for the incoming task. The shift

in these measures with healthy aging could also provide a deactivation basis

for reducing cognitive performance, i.e. with age, the increase or decrease

in mean lifetimes of a particular transient state may inhibit the deactiva-

tion of resting networks efficiently which leads to poor task performance.

These four measures together constitute the ‘structural chronnectome’ of

each state.

4. Change in global coherence with age in major frequency bands showed interesting

and consistent patterns in all states. An overall decreasing trend in global coher-

ence was seen in the wideband (0-40 Hz) frequency spectra in most states. The

reduction in whole-brain global coherence may be attributed to altered excitation-

inhibition balance between local brain areas due to age-related decline in tissue

properties. Another possible explanation behind this reduction might be cred-
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ited to an increase in neural noise in the older individuals, which brings down

the whole-brain coherence [63]. Theta (0.5-10 Hz) and alpha (5-15 Hz) band

thresholded spectra showed opposite trends of change in global coherence with

age. In the theta band, all states showed a U-shaped pattern of change in global

coherence as we went from younger to older age groups. In the alpha band, this

trend was reversed, and an inverse U-shaped pattern was found. This suggested

that a compensation mechanism might be at play which prevents the reduction of

overall coherence between brain regions by dynamically reorganizing the spectral

properties of whole-brain networks. Global coherence in the beta band thresh-

olded spectra was seen to follow a non-linear trend, with higher coherence in the

young age group followed by a drop in the early middle-aged group. It increases

again in the late middle-aged group and remains relatively similar in the older

group.

5. Connectivity between brain regions in different transient states was also seen to

be affected by phase coupling in previous studies[53]. The phase lag index used to

quantify the phase coupling between two brain regions followed a different trend

with age than coherence. However, in specific spatial clusters of power (higher

than the global average) in each state, the PLI measures in specific frequency

bands did not show any significant differences with age. Coherence based con-

nectivity between regions in the significant clusters revealed another interesting

phenomenon. Reduced connectivity was found in all states in the middle-aged

groups in the theta and the young and old groups in the alpha band. The higher

connectivity in both cases was found to span both anterior and posterior regions.

The reduction was more severe for posterior connections in the theta band and

anterior connections in the alpha band. This further supports the hypothesis

of a compensatory mechanism in the reorganization of transient brain networks,

allowing dynamic cross-frequency changes in spectral measures to prevent or alle-

viate the detrimental effects of aging on cognition. A possible mechanism behind

this reorganization might be the formation of new modules between areas which

were not previously connected. At older ages, the higher number of connections

(as seen in the theta band) might help the overall functional integration of the

brain areas that allows it to cope with the loss in the structural integrity of the

neuronal structures. However, this also leads to loss of functional specialization

of the underlying large scale networks, which may also be considered detrimental.

Thus, functional integration at the expense of functional segregation may act as
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an essential mechanism that drives the reorganization of transient brain networks

with age.

The large scale resting-state brain networks have been studied in the context of aging

for various measures in many studies. In the face of advancing age, cognitive perfor-

mance decreases in many modalities and tasks, such as working memory, attention,

decision-making, etc. The hugely informative dynamics in the resting brain, which

pave the way to understanding how the brain can effectively switch from an ‘idle’

state to an attentive state, are usually studied with fMRI BOLD responses. Although

fMRI provides a high spatial resolution and a direct correlation between activation of

a brain area and a particular task, the slow hemodynamic response poses a challenge

in studying fast perceptual processes, which typically occur on a millisecond timescale.

This drawback can be overcome by using EEG or MEG, which provide high temporal

resolution with a sampling rate of 1000Hz or more. EEG microstates are quasi-stable

topographies that model the power over the scalp and cluster these topographies into

unique maps recurring over time. This is similar to the HMM approach of defining

transient states; however, MEG data provides superior spatial resolution. Source-

reconstructed MEG also allows the data-driven characterization of transient states on

the basis of both temporal and spectral dynamics. This type of organization of dy-

namic activity through transient spatial patterns of coordination can provide flexibility

in understanding the adaptation required to allow the brain to respond to the rapidly

changing computational demands of cognitive processing. Thus, understanding how

the short-lived transient states in the context of healthy aging seemed imperative to

gain a perspective of how the brain attempts to retain cognitive power as a person gets

older.



Chapter 5

Conclusion

Our study highlights the major differences between the spatial, temporal and spectral

characteristics of the large scale transient brain networks with age. It provides an im-

portant insight into their dynamics and adaptability in healthy aging. The temporal

scale considered here is much faster than previously established. We could replicate the

patterns of global age-related changes found in the brain using fMRI techniques. The

superior temporal resolution of MEG-data and the complete data-driven manner of our

state characterization enables us to relate the transient, spontaneous brain dynamics

to perception and cognition more meaningfully.

A few limitations of this study include a lack of robust validation performed on the ac-

curacy of the model’s prediction. The analysis was performed on group-level measures,

which might not allow us to understand the idiosyncrasies in each subject’s data. Only

one minute of the resting state MEG data was used in this study due to computational

power constraints. Including more time points can reveal more unique spatiotemporal

activation patterns and might correlate better with known resting-state networks.

Future Directions

An immediate extension of our study could be to increase the number of participants

and the number of data points to let the model learn the variability in the data better. A

lifespan analysis considering subject level differences rather than group-level differences
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can show us a more direct relationship between the measures included in the study with

age. Regression analysis could show the exact dependence of the temporal and spectral

measures with age. Moreover, the data can be divided into training, testing, and

validation sets to ensure high model accuracy. Finally, the analysis could directly be

used to study task-related transient brain dynamics to determine how task performance

relates to these measures.
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Appendix

Table 5.1: Pairwise comparison of cluster based activation values between the age

groups. Multiple comparison was performed using Post Hoc Tuley’s test for pairwise

T-test and controlled for family wise error rate. The asterisk (*) denotes that the

differences between the means of the two groups are significant in the 95% interval of

confidence. NS denotes the difference between means are not significant.

Age group Age group p value Sig.

Early Middle 0.97 NS

Young Late Middle 1.26e-26 *

Old 0.99 NS

Early middle Late Middle 2.53e-27 *

Old 0.99 NS

Late middle Old 3.98e-27 *
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Table 5.2: Pairwise comparison of whole brain activation values between all states.

Multiple comparison was performed using Post Hoc Tukey’s test for pairwise T-test

and controlled for family wise error rate. The asterisk (*) denotes that the differences

between the means of the two groups are significant in the 95% interval of confidence.

NS denotes the difference between means are not significant. A p−value of zero indi-

cates that the first four digits after the decimal point are zeros.

State Number State Number p value Sig.

2 0.01 *

3 0 *

4 0 *

1 5 0 *

6 0 *

7 1.11e-14 *

8 0 *

3 0 *

4 0 *

2 5 0 *

6 0 *

7 0 *

8 0 *

4 0.14

5 0.99

3 6 0.11

7 0.36

8 0 *

5 0.19

4 6 0.99

7 3.82e-5 *

8 0 *

6 0.15

5 7 0.27

8 0 *

6 7 2.16e-5 *

8 0 *

7 8 0 *



Table 5.3: Comparisons between transition probabilities from one state to another.

An asterisk denotes statistical significance at alpha = 0.05, and NS denotes that the

difference between group means are not significant at the given confidence interval.

State Number State Number p value Sig.

2 0.97 NS

3 0.12 NS

4 0.96 NS

1 5 0.92 NS

6 0 *

7 3.00e-3 *

8 0.91 NS

3 0.005 *

4 0.99 NS

2 5 0.99 NS

6 1.39e-18 *

7 0.09 NS

8 0.32 NS

4 0.004 *

5 0.002 *

3 6 0 *

7 2.10e-9 *

8 0.83 NS

5 0.99 NS

4 6 2.12e-18 *

7 1.07e-1 *

8 0.29 NS

6 1.39e-17 *

5 7 0.16 NS

8 0.2 NS

6 7 1.99e-8 *

8 0 *

7 8 1.26e-5 *



Table 5.4: Pairwise comparison of whole brain phase lag index values of all age groups

in the theta band frequency range. Multiple comparison was performed using Post Hoc

Tukey’s test for pairwise T-test and controlled for family wise error rate. The asterisk

(*) denotes that the differences between the means of the two groups are significant

in the 95% interval of confidence. NS denotes the difference between means are not

significant.

Age group Age group p value Sig.

Early Middle 9.85e-5 *

Young Late Middle 3.05e-8 *

Old 0 *

Early middle Late Middle 0.41 NS

Old 9.35e-18 *

Late middle Old 5.14e-12 *

Table 5.5: Pairwise comparison of whole brain phase lag index values of all age groups

in the alpha band frequency range. Multiple comparison was performed using Post Hoc

Tukey’s test for pairwise T-test and controlled for family wise error rate. The asterisk

(*) denotes that the differences between the means of the two groups are significant

in the 95% interval of confidence. NS denotes the difference between means are not

significant.

Age group Age group p value Sig.

Early Middle 0.95 NS

Young Late Middle 0.68 NS

Old 3.89e-8 *

Early middle Late Middle 0.93 NS

Old 1.66e-9 *

Late middle Old 2.72e-11 *



(a) Pairwise comparison of cluster based coherence values between age groups

Age group Age group p value Sig.

Early Middle 9.31e-14 *

Young Late Middle 0 *

Old 1.18e-5 *

Early middle Late Middle 5.16e-4 *

Old 0.02 *

Late middle Old 5.43e-11 *

(b) Pairwise comparison of cluster based coherence values between age groups

Age group Age group p value Sig.

Early Middle 0 *

Young Late Middle 0 *

Old 0.99 NS

Early middle Late Middle 0.28 NS

Old 0 *

Late middle Old 0 *

Table 5.6: Cluster based coherence values and their comparison between age groups.

The significant differences are denoted by an asterisk. Non-significant differences are

marked as NS.



(a) Pairwise comparison of cluster based PLI values between age groups

Age group Age group p value Sig.

Early Middle 0.14 NS

Young Late Middle 0.99 NS

Old 0.31 NS

Early middle Late Middle 0.19 NS

Old 0.98 NS

Late middle Old 0.39 NS

(b) Pairwise comparison of cluster based PLI values between age groups

Age group Age group p value Sig.

Early Middle 1.00 NS

Young Late Middle 0.85 NS

Old 0.97 NS

Early middle Late Middle 0.84 NS

Old 0.96 NS

Late middle Old 0.99 NS

Table 5.7: Cluster based PLI values and their comparison between age groups. Tables

5.7a and 5.7b shows no significant changes across age groups (NS = non-significant) in

both of the frequency ranges.
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